Solving Integer Linear Programs with a Small Number of Global Variables and Constraints
نویسندگان
چکیده
Integer Linear Programming (ILP) has a broad range of applications in various areas of artificial intelligence. Yet in spite of recent advances, we still lack a thorough understanding of which structural restrictions make ILP tractable. Here we study ILP instances consisting of a small number of “global” variables and/or constraints such that the remaining part of the instance consists of small and otherwise independent components; this is captured in terms of a structural measure we call fracture backdoors which generalizes, for instance, the well-studied class of N -fold ILP instances. Our main contributions can be divided into three parts. First, we formally develop fracture backdoors and obtain exact and approximation algorithms for computing these. Second, we exploit these backdoors to develop several new parameterized algorithms for ILP; the performance of these algorithms will naturally scale based on the number of global variables or constraints in the instance. Finally, we complement the developed algorithms with matching lower bounds. Altogether, our results paint a near-complete complexity landscape of ILP with respect to fracture backdoors.
منابع مشابه
A Mathematical Optimization Model for Solving Minimum Ordering Problem with Constraint Analysis and some Generalizations
In this paper, a mathematical method is proposed to formulate a generalized ordering problem. This model is formed as a linear optimization model in which some variables are binary. The constraints of the problem have been analyzed with the emphasis on the assessment of their importance in the formulation. On the one hand, these constraints enforce conditions on an arbitrary subgraph and then g...
متن کاملSolving Linear Programs with Complementarity Constraints using Branch-and-Cut
A linear program with linear complementarity constraints (LPCC) requires the minimization of a linear objective over a set of linear constraints together with additional linear complementarity constraints. This class has emerged as a modeling paradigm for a broad collection of problems, including bilevel programs, Stackelberg games, inverse quadratic programs, and problems involving equilibrium...
متن کاملGlobal optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملA Non-linear Integer Bi-level Programming Model for Competitive Facility Location of Distribution Centers
The facility location problem is a strategic decision-making for a supply chain, which determines the profitability and sustainability of its components. This paper deals with a scenario where two supply chains, consisting of a producer, a number of distribution centers and several retailers provided with similar products, compete to maintain their market shares by opening new distribution cent...
متن کاملA Branch-and-cut Algorithm for Discrete Bilevel Linear Programs
We present a branch-and-cut algorithm for solving discrete bilevel linear programs where the upper-level variables are binary and the lower-level variables are either pure integer or pure binary. This algorithm performs local search to find improved bilevelfeasible solutions. We strengthen the relaxed node subproblems in the branch-and-cut search tree by generating cuts to eliminate all of the ...
متن کامل